

Figure 2. Vapor pressure of glycerol
during weighing intervals. There is the additional possibility of decomposition of the glycerol during the ten successive distillations used for preparation. These probably were simple distillations at atmospheric pressure (b.p. $290^{\circ} \mathrm{C}$.) and, since polymerization and decomposition are reported to begin at little over $200^{\circ} \mathrm{C}$. (7), the purity of the glycerol studied remains in doubt.

To test the effect of minute quantities of water present in the glycerol, an opened sample vial was left in a desiccator for several months and then used for a vapor pressure measurement. The water absorbed, even in this very dry
atmosphere, was sufficient to increase the apparent vapor pressure by a factor of five. Thus, it is possible that thorough drying of Wyllie's glycerol could have lowered the measured vapor pressure to coincide with the present study. A prime advantage of the present method thus becomes its ability to obtain weight measurements without exposure of the glycerol to the atmosphere during the weighing process.

NOMENCLATURE

$A_{0}=$ orifice area, $\mathrm{sq} . \mathrm{cm}$.
$A_{s}=$ surface area of evaporating liquid, sq. cm.
$M=$ molecular weight, grams/gram-mole
$P=$ pressure, dyne/sq. cm.
$P_{b}=$ vapor pressure, dyne $/ \mathrm{sq} . \mathrm{cm}$.
$P_{t}^{\prime}=$ steady state cell pressure, dyne $/ \mathrm{sq} . \mathrm{cm}$.
$r=$ radius of effusion canal (orifice), cm .
$R=$ gas content, 8.31×10^{7} dyne $\mathrm{cm} . /$ gram-mole ${ }^{\circ} \mathrm{K}$.
$t=$ length of effusion canal (foil thickness), cm .
$T=$ temperature, ${ }^{\circ} \mathrm{K}$.
$W_{b}=$ Clausing factor for orifice, dimensionless
$\mathrm{d} W / \mathrm{d} \theta=$ rate of weight loss, grams/hour
$\alpha=$ evaporation coefficient, dimensionless

literature cited

(1) Bondi, A., Simkin, D.J., A.I.Ch.E. Journal 3, 473 (1957).
(2) Bradley, R.S., Bird, C.L., Jones, F., Trans. Faraday Soc. 56, 23 (1960).
(3) Clausing, P., Ann. Physik. 12, 961 (1932).
(4) Filosofo, I., Merlin, M., Rostagni, A., Nuovo Cimento 7, 69 (1950).
(5) Heideger, W.J., Boudart, M., "Interfacial Resistance to Evaporation," Chem. Eng. Sci. 17, 1 (1962).
(6) Knudsen, M., Ann. Physik. 28, 75, 999 (1909).
(7) Miner, C.S., Dalton, N.N., "Glycerol," p. 116, Reinhold, New York, 1953.
(8) Ross, G.R., M.S. thesis, University of Washington, Seattle, Washington, 1961.
(9) Stedman, D.F., Trans. Faraday Soc. 24, 289 (1928).
(10) Trevoy, D.J., Ind. Eng. Chem. 45, 2366 (1953).
(11) Wyllie, G., Proc. Roy. Soc. A197, 383 (1949).
(12) Zil'berman-Granovskaya, A.A., Zhur. Fiz. Khim. 14, 759 (1940).

Received for review March 26, 1962. Accepted July 2, 1962.

Compressibility Factors of 2,2-Dimethylpropane (Neopentane)

H. R. HEICHELHEIM ${ }^{1}$, K. A. KOBE ${ }^{2}$, I. H. SILBERBERG, and J. J. McKETTA The University of Texas, Austin, Tex.

A STANDARD Burnett apparatus was modified and used to determine the compressibility isotherms of gaseous 2,2 -dimethylpropane (neopentane) between 1 atm . and the vapor pressure at $30^{\circ}, 50^{\circ}, 75^{\circ}, 100^{\circ}, 125^{\circ}$, and $150^{\circ} \mathrm{C}$., and between 1 and 70 atm . at $161.5^{\circ}, 175^{\circ}$, and $200^{\circ} \mathrm{C}$. The critical temperature of 2,2-dimethylpropane is $160.60^{\circ} \mathrm{C}$. (1).

[^0]

Figure 1. Modified Burnett apparatus

APPARATUS

The Burnett method (3) employs two thermostated chambers connected by a valve (Figure 1). The gas under investigation is introduced into V_{I} while $V_{\text {II }}$ is evacuated. The pressure in $V_{\text {I }}$ is measured, whereupon the gas is expanded into $V_{\text {II }}$ and the pressure is again measured. The
evacuation of V_{II} and expansion of the contents of V_{I} into it are then repeated until as low a pressure is reached as can be measured precisely. The compressibility factor can then be calculated at each measured pressure according to the relations given below.
With each expansion, the density of the gas drops an equal fraction of the previous density, giving very large pressure intervals at high pressures. If the expansion chamber is made small so that the pressure interval is small, then the pressures ivecome so close together at the lower pressures that an unreasonable number of measurements is required to complete a single run.
To overcome this disadvantage, a third chamber was added to the first two. Initial expansions are made into the new $V_{\text {III }}$, until the pressure intervals become less than the maximum desired. Subsequent expansions are made into $V_{\text {II }}$.
The density of the gas after any expansion into $V_{\text {III }}$ is

$$
\mathrm{d}_{\mathrm{i}}=(1 / M) d_{i-1}
$$

where

$$
M=\left(V_{\mathrm{I}}+V_{\mathrm{III}}\right) / V_{\mathrm{I}}
$$

Since

$$
\begin{gathered}
\mathrm{d}=P / z R T \\
P_{i} / z_{i} R T_{i}=P_{i-1 /} / z_{i-1} R T_{i-1} M
\end{gathered}
$$

and

$$
\begin{equation*}
z_{i}=\left(P_{i} M / T_{i}\right) /\left(P_{i-1} / z_{i-1} T_{i-1}\right) \tag{1}
\end{equation*}
$$

Repeated substitution in the denominator of this expression in terms of the previous expansion ultimately yields

$$
z_{i}=\left(P_{i} M^{i} / T_{i}\right) /\left(P_{0} / z_{0} T_{0}\right)
$$

Let $r m$ be the last expansion into $V_{\text {III }}$, subsequent expansions being made into $V_{\text {II }}$.

$$
\begin{aligned}
z_{r m-1} & =\left(P_{r m+1} N / T_{r m-1}\right) /\left(P_{r m} / z_{r m} T_{r m}\right) \\
& =\left(P_{r m-1} M^{m m} N / T_{r m+1}\right) /\left(P_{0} / z_{0} T_{0}\right)
\end{aligned}
$$

where

$$
N=\left(V_{\mathrm{I}}+V_{\mathrm{II}}\right) / V_{\mathrm{I}}
$$

and in general,

$$
\begin{equation*}
z_{i}=\left(P_{i} M^{\prime} N^{i-r} / T_{i}\right) /\left(P_{0} / z_{0} T_{0}\right) \tag{2}
\end{equation*}
$$

where for $i \leqq r m, r=i$, and for $i>r m, r=r m$.

During any particular run, the temperature might vary $=0.05^{\circ} \mathrm{C}$. To correct for this variation, the temperature of each measurement is retained in Equation 2. When the investigation of a gas is complete, each compressibility is corrected to the nominal isotherm by

$$
z_{\mathrm{corr}}=z_{i}+(\partial z / \partial T)_{P}\left(T-T_{t}\right)
$$

where the unsubscripted T is the nominal temperature of the isotherm.
Equation 2 permits calculation of z_{i} at each measured P_{i} and T_{i} provided that M, N, and $P_{0} / z_{0} T_{0}$ are known. Rearrangement of Equation 2 shows that

$$
\begin{array}{r}
P_{0} / z_{0} T_{0}=P_{i} M^{r} N^{i-r} / T_{i} z_{i}=\operatorname{Lim} P_{i} M^{r} N^{i-r} / T_{i} \\
P_{i} \rightarrow 0
\end{array}
$$

This limit is determined graphically for each run.
M is determined from a series of expansions into $V_{\text {III }}$ carried down to a low pressure. Then from Equation 1

$$
M=\left(P_{i-1} / z_{i-i} T_{i-1}\right) /\left(P_{i} / z_{i} T_{i}\right)=\operatorname{Lim} \frac{\left(P_{i-1} / T_{i-1}\right)}{\left(P_{i} / T_{i}\right)}
$$

N is found by a similar set of expansions into $V_{\text {II }}$. The limits are taken graphically, and once the constants are determined, they remain unchanged until one of the chambers is disturbed.

MATERIALS

2,2-Dimethylpropane of 99.92% purity was obtained from the Phillips Chemical Co. Chromatographic analysis showed the presence of over 15% air (or nitrogen) in the vapor phase. This was removed by freezing the hydrocarbon and evacuating the vapor space. Two such treatments reduced the permanent gas to less than 0.02%.

EXPERIMENTAL

The compressibility cells were thermostated in a stirred oil bath, controlled by a thermistor in conjunction with an a.c. bridge. Temperature control was to $\pm 0.05^{\circ} \mathrm{C}$. Pressures above 3 atm . were measured with a dead weight (piston) gage; below 3 atm., with mercury manometers. Precision of the pressure measurements was estimated to be $\pm 0.04 \%$.

The compressibility factors of 2,2 -dimethylpropane are presented in Table I and in Figure 2. No point deviated from the indicated curves by more than 0.15%, except for a few points in obviously serious error, and the points in the critical region. The data overlap the data of Beattie, Douslin, and Levine (2) at temperatures above the critical and are from 0.57 to 1.9% below them.

Figure 2. Compressibility factors of 2,2-dimethylpropane

Table I. Isothermal Compressibility Factors of 2,2-Dimethylpropane (Neopentane)

Press., Atm.	Z, Compressibility ${ }^{\text {a }}$	Vol., L./G. Mole	Press., Atm.	Z, Compressibility ${ }^{a}$	Vol., L. /G. Mole	Press., Atm.	Z, Compressibility ${ }^{\text {a }}$	Vol., L./G. Mole	Press., Atm.	Z, Compressibility ${ }^{a}$	Vol., L. G. Mole					
	$30^{\circ} \mathrm{C}$.			$100^{\circ} \mathrm{C}$.			$161.5^{\circ} \mathrm{C}$.	-		$175^{\circ} \mathrm{C}$.						
0.9434	0.9643	25.428	8.9864	0.8106	2.7621	0.9710	0.9864	36.232	27.081	0.6603	0.8966					
1.0555	0.9601	22.626	9.8187	0.7881	2.4578	1.1960	0.9860	29.404	28.074	0.6425	0.8416					
1.1804	0.9554	20.133	10.343	0.7731	2.2886	1.3702	0.9827	25.581	29.842	0.6077	0.7488					
1.3191	0.9500	17.914	10.652	0.7608	2.1869	1.6840	0.9802	20.760	31.515	0.5711	0.6663					
1.3510	0.9487	17.469		$125^{\circ} \mathrm{C}$.		1.9293	0.9770	18.061	32.209	0.5543	0.6330					
1.4730	0.9439	15.940				2.3664	0.9725	14.657	33.055	0.5330	0.5929					
1.6426	0.9366	14.184	0.9891	0.9844	32.515	2.7906	0.9687	12.752	34.432	0.4940	0.5276					
1.8553	0.9199	12.334	1.0719	0.9827	29.951	3.3128	0.9612	10.348	35.633	0.4544	0.46943					
			1.1098	0.9829	28.932	3.7887	0.9564	9.003	36.068	0.4382	0.44695					
	$50^{\circ} \mathrm{C}$.		1.5091	0.9768	21.146	4.6172	0.9458	7.306	36.636	0.4161	0.41770					
0.9948	0.9685	25.813	1.5611	0.9762	20.427	5.2704	0.9393	6.356	37.510	0.3791	0.37167					
1.0290	0.9685	24.956	2.1155	0.9668	14.930	6.3957	0.9250	5.158	38.328	0.3446	0.33072					
1.1519	0.9648	22.206	2.1893	0.9665	14.422	7.2767	0.9156	4.4878	38.673	0.3317	0.31556					
1.2472	0.9613	20.437	2.9558	0.9537	10.541	8.7752	0.8961	3.6420	39.253	0.3140	0.29427					
1.2895	0.9610	19.759	3.0579	0.9532	10.182	9.9379	0.8828	3.1685	40.605	0.2892	0.26185					
1.4422	0.9563	17.582	4.1075	0.9357	7.442	11.878	0.8564	2.5714	43.366	0.2749	0.23299					
1.6111	0.9506	15.644	4.2472	0.9347	7.189	13.355	0.8377	2.2371	45.274	0.2743	0.22279					
1.7396	0.9467	14.429	5.6621	0.9106	5.254	15.758	0.8021	1.8155	50.299	0.2837	0.20732					
1.7991	0.9446	13.921	5.8459	0.9083	5.076	17.539	0.7767	1.5794	69.092	0.3466	0.18447					
2.0084	0.9382	12.387	6.4917	0.8975	4.5164	20.309	0.7299	1.2818								
2.2387	0.9306	11.022	7.1969	0.8853	4.0187	22.260	0.6959	1.1151		$200^{\circ} \mathrm{C}$.						
2.4083	0.9253	10.188	7.7133	0.8759	3.7098	25.082	0.6364	0.9050	2.0017	0.9823	19.053					
2.4937	0.9223	9.807	7.9648	0.8718	3.5759	26.894	0.5936	0.7873	2.8113	0.9751	13.467					
2.7730	0.9126	8.726	8.7962	0.8568	3.1818	29.163	0.5223	0.6389	3.9374	0.9653	9.519					
3.0759	0.9008	7.765	9.6931	0.8402	2.8312	30.350	0.4728	0.5559	5.4098	0.9481	6.804					
3.2837	0.8908	7.193	10.326	0.8279	2.6192	31.424	0.3973	0.45111	5.4777	0.9492	6.728					
3.3773	0.8801	6.909	10.653	0.8216	2.5192	31.737	0.3489	0.39246	7.5092	0.9302	4.8096					
			11.671	0.8009	2.2416	31.820	0.3115	0.34921	7.5943	0.9303	4.7555					
	$75^{\circ} \mathrm{C}$.		12.740	0.7779	1.9946	31.852	0.2773	0.31073	10.340	0.9054	3.3995					
1.0217	0.9756	27.280	13.459	0.7618	1.8492	31.853	0.2845	0.31850	10.450	0.9048	3.3613					
1.0456	0.9742	26.612	13.851	0.7526	1.7748	31.882	0.2472	0.27649	14.077	0.8712	2.4029					
1.2792	0.9704	21.670	14.990	0.7245	1.5792	32.097	0.2215	0.24602	14.216	0.8700	2.3759					
1.2995	0.9693	21.310	16.124	0.6931	1.4052	32.619	0.2057	0.22487	18.862	0.8251	1.6984					
1.4322	0.9656	19.261	16.816	0.6722	1.3056	33.524	0.2059	0.21891	19.029	0.8231	1.6793					
1.4672	0.9650	18.788	17.176	0.6572	1.2504	39.913	0.2180	0.19479	24.705	0.7639	1.2005					
1.7888	0.9580	15.299				48.826	0.2437	0.17804	24.897	0.7612	1.1870					
1.8174	0.9571	15.045		$150{ }^{\circ} \mathrm{C}$.		61.940	0.3010	0.17333	27.012	0.7376	1.0601					
2.0008	0.9524	13.599	0.9820	0.9878	34.925				29.195	0.7121	0.9468					
2.0484	0.9512	13.264	1.0665	0.9872	32.135		$175^{\circ} \mathrm{C}$.		31.362	0.6857	0.8485					
2.4898	0.9414	10.801	1.1963	0.9852	28.594	1.0517	0.9899	34.610	31.437	0.6848	0.8456					
2.5290	0.9403	10.622	1.3834	0.9825	24.658	1.1798	0.9880	30.796	33.705	0.6561	0.7552					
2.7779	0.9336	9.601	1.6827	0.9784	20.188	1.2452	0.9865	29.132	35.984	0.6255	0.6745					
2.8435	0.9321	9.365	1.9433	0.9743	17.410	1.6624	0.9829	21.743	38.072	0.5961	0.6078					
3.4378	0.9177	7.626	2.3617	0.9695	14.254	1.7554	0.9819	20.568	38.247	0.5937	0.6024					
3.8225	0.9069	6.779	2.7252	0.9647	12.292	2.3380	0.9760	15.351	38.342	0.5922	0.5998					
3.9104	0.9051	6.611	3.3034	0.9574	10.064	2.4666	0.9740	14.522	40.376	0.5625	0.5408					
4.2411	0.8954	6.032	3.8046	0.9509	8.678	3.2791	0.9665	10.838	40.466	0.5611	0.5382					
4.6909	0.8840	5.384	4.5982	0.9409	7.105	3.4578	0.9641	10.253	42.629	0.5285	0.48119					
4.6996	0.8829	5.367	5.2805	0.9318	6.127	4.5814	0.9534	7.652	42.644	0.5280	0.48069					
5.1977	0.8689	4.7756	6.3525	0.9178	5.016	4.8247	0.9497	7.239	44.799	0.4954	0.42931					
5.7342	0.8530	4.2494	7.2682	0.9056	4.3259	6.3580	0.9342	5.403	44.864	0.4948	0.42817					
6.2626	0.8332	3.8009	8.6898	0.8864	3.5418	6.6942	0.9304	5.111	46.982	0.4640	0.38342					
6.2832	0.8317	3.7811	9.6200	0.8731	3.1515	8.7584	0.9085	3.8145	47.126	0.4624	0.38099					
			9.8828	0.8693	3.0542	9.2048	0.9032	3.6084	49.299	0.4347	0.34244					
	$100^{\circ} \mathrm{C}$.		10.632	0.8586	2.8042	11.924	0.8733	2.6932	49.531	0.4325	0.33900					
1.0211	0.9808	29.411	11.722	0.8424	2.4952	12.502	0.8661	2.5476	51.969	0.4094	0.30584					
1.1451	0.9787	26.170	12.892	0.8243	2.2202	15.949	0.8247	1.9015	52.346	0.4068	0.30165					
1.6076	0.9701	18.477	13.198	0.8197	2.1564	16.666	0.8152	1.7987	55.423	0.3902	0.27315					
2.2495	0.9585	13.045	14.140	0.8046	1.9756	20.820	0.7601	1.3425	56.134	0.3881	0.26841					
2.3346	0.9566	12.547	15.459	0.7826	1.7579	21.642	0.7474	1.2700	60.710	0.3816	0.24395					
3.1285	0.9410	9.210	16.835	0.7584	1.5642	22.594	0.7340	1.1946	62.114	0.3820	0.23883					
3.2460	0.9391	8.858	17.167	0.7526	1.5225	24.417	0.7058	1.0629	70.171	0.3938	0.21788					
4.3195	0.9174	6.503	18.259	0.7319	1.3918	26.251	0.6752	0.9458	73.157	0.4003	0.21251					
4.4751	0.9140	6.254	19.704	0.7028	1.2384											
4.9740	0.9039	5.565	21.146	0.6711	1.1020											
5.5189	0.8924	4.9518	21.454	0.6643	1.0749	${ }^{a} P V / R T$.										
5.8966	0.8842	4.5912	22.549	0.6368	0.9806											
6.1107	0.8793	4.4062	23.864	0.5997	0.8725											
6.7540	0.8647	3.9206	25.049	0.5601	0.7764											
7.4495	0.8488	3.4886	25.267	0.5524	0.7589	Phillips Chemical Co., and part of the apparatus was a gift of the Socony-Mobil Co.										
7.9162	0.8381	3.2415	26.040	0.5158	0.6908											
81942	0.8307	3.1042	26.090	0.5075	0.6753											

literature cited

ACKNOWLEDGMENT

This research was supported in part by a grant from the Petroleum Research Fund administered by the American Chemical Society. Grateful acknowledgment is hereby made to these donors. The materials were donated by the
(1) Beattie, J.A., Douslin, D.R., Levine, S.W., J. Chem. Phys. 19, 948-9 (1951).
(2) Ibid.. 20, 1619-20 (1952).
(3) Burnett, E.S., J. Appl. Mech. 58, A136-40 (1936).

Received for review March 27, 1962. Accepted July 23, 1962.

[^0]: ${ }^{\text {I }}$ Present address, Texas Technological College, Lubbock, Tex.
 ${ }^{2}$ Deceased.

